cAMP Signaling Affects Irreversible Attachment During Biofilm Formation by Pseudomonas aeruginosa PAO1
نویسندگان
چکیده
Pseudomonas aeruginosa responds to environmental changes and regulates its life cycle from planktonic to biofilm modes of growth. The control of cell attachment to surfaces is one of the critical processes that determine this transition. Environmental signals are typically relayed to the cytoplasm by second messenger systems. We here demonstrated that the second messenger, cAMP, regulated the attachment of cells. Our results suggest cAMP inhibited the transition from reversible to irreversible attachment. Further analyses revealed that cell surface hydrophobicity, one of the key factors in cell attachment, was altered by cAMP.
منابع مشابه
Cyclic-di-GMP and oprF Are Involved in the Response of Pseudomonas aeruginosa to Substrate Material Stiffness during Attachment on Polydimethylsiloxane (PDMS)
Recently, we reported that the stiffness of poly(dimethylsiloxane) (PDMS) affects the attachment of Pseudomonas aeruginosa, and the morphology and antibiotic susceptibility of attached cells. To further understand how P. aeruginosa responses to material stiffness during attachment, the wild-type P. aeruginosa PAO1 and several isogenic mutants were characterized for their attachment on soft and ...
متن کاملGlobal Regulator MorA Affects Virulence-Associated Protease Secretion in Pseudomonas aeruginosa PAO1
Bacterial invasion plays a critical role in the establishment of Pseudomonas aeruginosa infection and is aided by two major virulence factors--surface appendages and secreted proteases. The second messenger cyclic diguanylate (c-di-GMP) is known to affect bacterial attachment to surfaces, biofilm formation and related virulence phenomena. Here we report that MorA, a global regulator with GGDEF ...
متن کاملAlginate production affects Pseudomonas aeruginosa biofilm development and architecture, but is not essential for biofilm formation.
Extracellular polymers can facilitate the non-specific attachment of bacteria to surfaces and hold together developing biofilms. This study was undertaken to qualitatively and quantitatively compare the architecture of biofilms produced by Pseudomonas aeruginosa strain PAO1 and its alginate-overproducing (mucA22) and alginate-defective (algD) variants in order to discern the role of alginate in...
متن کاملExpression of the psl operon in Pseudomonas aeruginosa PAO1 biofilms: PslA performs an essential function in biofilm formation.
The psl gene cluster, comprising 15 cotranscribed genes from Pseudomonas aeruginosa, was recently identified as being involved in exopolysaccharide biosynthesis and biofilm formation. In this study, we investigated the regulation of the psl gene cluster and the function of the first gene in this cluster, the pslA gene. PslA shows strong similarities to UDP-glucose lipid carriers. An isogenic ma...
متن کاملElastase LasB of Pseudomonas aeruginosa promotes biofilm formation partly through rhamnolipid-mediated regulation.
Elastase LasB, an important extracellular virulence factor, is shown to play an important role in the pathogenicity of Pseudomonas aeruginosa during host infection. However, the role of LasB in the life cycle of P. aeruginosa is not completely understood. This report focuses on the impact of LasB on biofilm formation of P. aeruginosa PAO1. Here, we reported that the lasB deletion mutant (ΔlasB)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 29 شماره
صفحات -
تاریخ انتشار 2014